Modelling Early Risk Indicators to Anticipate Malnutrition (MERIAM)

David Backer

University of Maryland

Ravi Bhavnani

Graduate Institute Geneva

Shannon Doocy *Johns Hopkins University*

Kathryn Grace
University of Minnesota

Pascal Debons

Alice Stevenson Ellyn Yakowenko

Action Against Hunger

BACKGROUND

- Global challenges of food insecurity
- o 47 million children are acutely malnourished
- Nearly half of all deaths in children under the age of five attributed to malnutrition
- Decision-makers lack timely, evidence-based information on acute malnutrition
- Pressing practical need to facilitate action ahead of a crisis, rather than responses during or after peak

PROJECT GOALS

- Design, test, and scale up cost-effective means to improve the prediction and monitoring of acute malnutrition
- Comparative analysis of several priority countries affected by climate- and conflict-related shocks
- Modeling using open access secondary data
- Identification of leading indicators
- Enhance capabilities of stakeholders in humanitarian community to be proactive in responding to risks of acute malnutrition

FINDINGS

- Open-source data can be used to predict acute malnutrition in difficult, volatile contexts with real-world utility
- Strong, consistent performance of both modelling approaches
- High accuracy when mapped onto IPC-equivalent scale
- Out-of-sample tests indicate utility in forecasting applications
- Further analysis and validation remains ongoing
- Model-based tools currently under development have potential to advance early warning in a manner that enables effective responses to manage and mitigate nutritional risk

METHODOLOGY

- Novel approach using multiple types of modelling
- Complementary analysis
- Different points of emphasis
- Varying levels of granularity
- o Greater generalizability and robustness of results
- Two workstreams of spatio-temporal econometric modelling
- Subnational regional
- Covers 29 countries in sub-Saharan Africa from 2000-2018
- Predicting regional prevalence rate of acute malnutrition
- Multi-level
- Analysis by region within Kenya, Uganda, Nigeria, Mali, and Somalia at select time points between 2003 and 2016
- Predicting measures of wasting at individual level, nested in units from household to regional level
- Models ascertain where acute malnutrition is expected and which children/households are likely to experience
- Workstream of evidence-driven computational modelling
- Prototypes focus on sub-national regions in three countries
- Uganda: Karamoja
- Kenya: West Pokot + Turkana
- Somalia: Hawd
- Purpose is to understand effects of household-level decisions on acute malnutrition
- Accounts for sources of variation: household characteristics; local, contextual factors; macro-level covariates

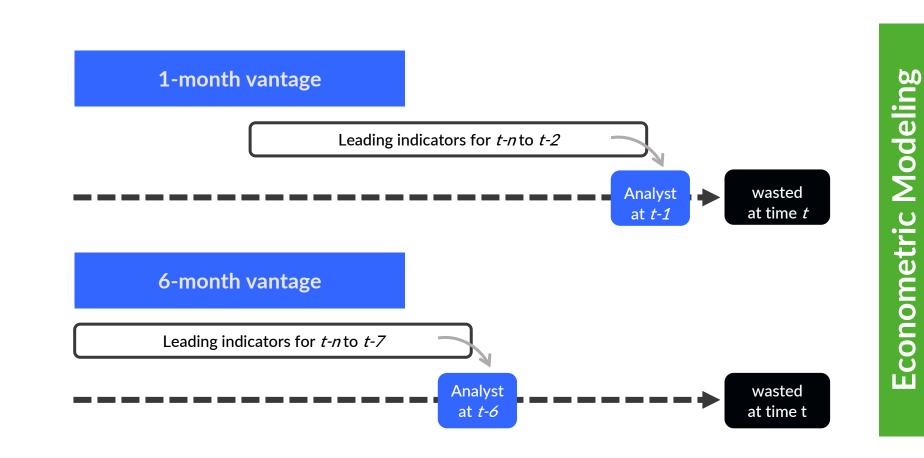


Figure 1: Econometric vantage point analysis at 1- and 6-month lead times Figure 3: Observed prevalence rate vs. predicted prevalence rate for subnational regions n Kenya, Mali, Nigeria, and Uganda

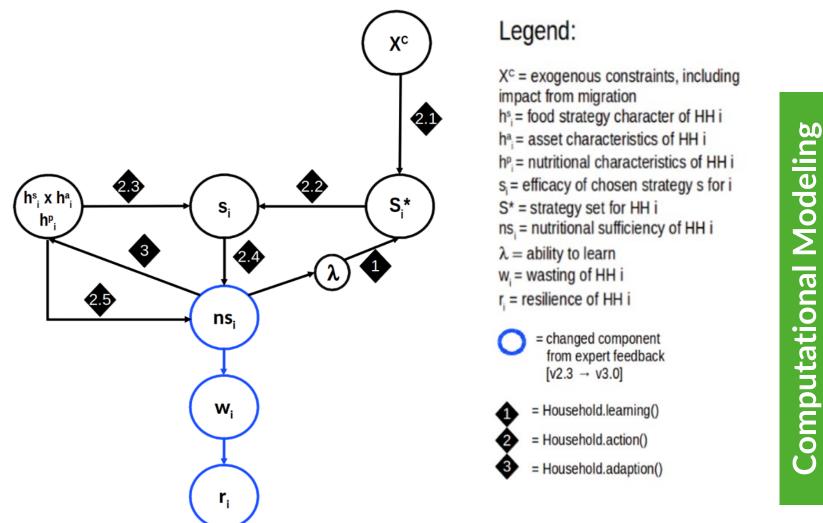
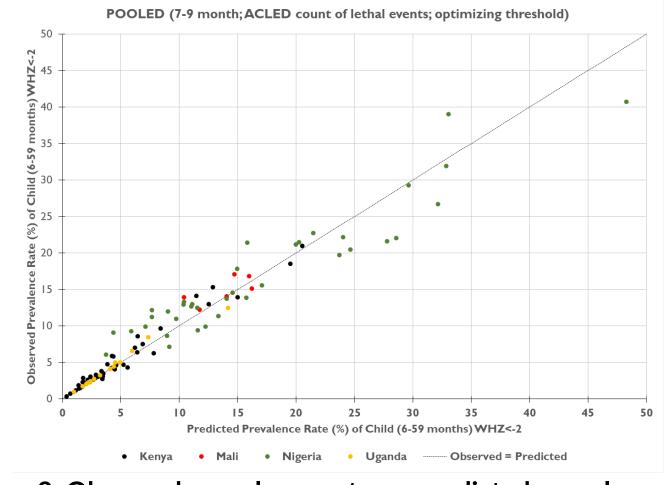



Figure 2: Framework of computational model

malnutrition prevalence
(MUAC < 135mm)

no data
0.1 - 2.0 %
2.1 - 5.0 %
5.1 - 7.0 %
7.1 - 9.0 %
9.1 - 11 %
> 11 %

Figure 4: Observed prevalence rate vs. predicted prevalence rate for wards of West Pokot, Kenya

